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Abstract—The scattering of time-harmonic plane longitudinal, shear and Rayleigh waves by a crack
in two dimensions embedded in a semi-infinite homogeneous isotropic elastic half-space has been
studied in this paper. Two problems have been considered : a straight crack and a Y-shaped crack.
A hybrid numerical technique combining a multipolar representation of the scattered field in the
half-space with the finite element method has been used to obtain the stress—intensity factors for
the crack tips. Numerical results for the various crack geometries and the incident waves are
discussed in this paper.

1. INTRODUCTION

Problems of scattering of elastic body and surface waves by a crack near a surface are
of considerable current interest for ultrasonic nondestructive evaluation. In recent years
Achenbach and his co-workers[1-9] have used an integral equation approach to study
scattering by surface~breaking and subsurface planar cracks. They have also developed a
ray theoretic technique to analyze scattering by planar cracks[10-14]. In a recent article[15]
Visscher uses a boundary integral equation formulation for scattering by planar cracks in
a half-space. He gives detailed numerical results for scattering of SH waves. Scattering of
SH waves by surface-breaking planar cracks were studied by Stone et al[16] using an
integral equation formulation and by Datta and co-workers[17-19] using a matched asymp-
totic expansion technique valid at long wavelengths as well as by a hybrid combined finite
element and analytical expansion technique, which is useful for long and intermediate wave-
lengths.

The hybrid technique used in [17-19] has the advantage that it can be used for any
arbitrarily shaped scatterers as well as for more than one scatterer. Recently, it has also
been used to study scattering of SH waves by a normal and arbitrarily oriented planar
crack in a thick plate[20--22],

In this paper two-dimensional elastic wave scattering by a crack lying in a semi-infinite
linearly elastic isotropic homogeneous medium has been studied. Two types of cracks have
been considered : a straight crack and a Y-shaped crack. The results for the former case
have been found to agree with those obtained in [4-7] for vertical and horizontal straight
cracks. We also present results for oblique straight cracks with angles of inclination not
considered in [9]. Thus these results complement those of [9]. Finally, we present results for
a Y-shaped crack which are new and are found to differ considerably from those for a
straight crack.

2. FORMULATION AND SOLUTION
For the case of plane-strain, an analytical procedure was presented in [23] for a circular
cylindrical pipe embedded in a semi-infinite medium. Also, a hybrid combined analytical
and numerical method was presented{24]} when irregularly shaped objects are embedded in
an infinite medium. Here we modify and extend the hybrid modeling to the case of irregularly
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shaped objects embedded in a semi-infinite medium. The same technique was recently used
to analyze surface displacements due to subsurface cavities[25].

As shown in Fig. 1 interior region R,, bounded by a circular boundary B of radius R,,
contains all the scattering inhomogeneities (e.g. cracks) and anisotropy. The exterior host
region R, is assumed to be isotropic and homogeneous having Lamé constants 2 and x and
mass density p. The displacement associated with the plane incident waves are denoted by
u®(x, y, 1), and it will be assumed that their directions of propagation make an angle y with
the negative y-axis. Only harmonic time dependence of the form e ~“*, where w is the circular
frequency, will be considered.

\\ ng\ 1550 //
\ L Y /
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Fig. 1. Geometry of (a) the straight crack and (b) the branched (Y) crack.
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Subdividing R; into finite elements having N,+ N; number of nodes, N, being the
number of interior nodes and N, the number of boundary nodes, the energy functional, F,
can be written as

F=qtSuq.,+qS1s9:,+9] STpqx, + 92 Sss4,,, m
in which q,, = ¢?, q,, = q?, the superscripts » and T designate complex conjugate and

transpose, respectively. The nodal displacements g5 have two components u, and u, along
the x and y directions, respectively. The element impedance matrices S, are defined as

[s]1= L f([B']T[Dl [B]-p.w’[L)[L]) dx dy, @

in which

Ox
a
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where L;(x, y) are shape functions. For isotropic material, [D] is given by

A+ 24, A, 0
[D] = A Ac+2u, O
0 0 e

In the exterior region R, the free field displacements (149, u{”) and the scattered
displacements (1, uf’) can be written as

Am —©
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where N; = M, = 4Ny, N, = M, = N,—1,and n, = n+N,. C,, D, are constants depend-
ing on the characteristic of the wave (P, SV or Rayleigh) and location of the source. The
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expressions for constants C,, D, and the functions G;”, G, D/ and D;" are given in [23-25]
and those for P,,,, O, Rmsand S,,, can be foundin [26 27]

Evaluating eqn (4) at each of the N, points on the circular boundary B, the scattered
displacement vector q,, can be written as

{4¥)} = (Gl {a} (5)
or
{49} = [G,){a}, (6)

where
[Gx)-] = [ﬂr[GrﬂL

— T —
a9 = (W )7, q¥) = (), ),

and the components T, of the transformation matrix are
cosf;, sin§,
(Ti]= [ —sinf, cos 9,}'

Using the stress—strain and strain—displacement relations, the nodal scattered stress vector
can be written from eqns (4) and (5) as

{a(:)} rG] { } [FIG] [Grﬂ] l{q(x) (7)

where

ot) = {0th, 0}

From eqn (7) it can be seen that if the final equations are to be solved in terms of the nodal
displacements the complex matrix [G,¢] has to be inverted as reported in {24]. Here we
present an alternate approach where the equations are solved in terms of the generalized
coordinates {a}, thus avoiding the inverse. To this end we write the expression for the
virtual work done on the boundary B as

on = J. {6¢% "} a1} dy, ®)
B

in which
¢, = a3 +q7,

1
6!} =o¥) +a7,

where q(9 and a9 are free-field quantities. Noting 3ql) = 6q%” and substituting eqns (5)
and (7) into eqn (8), we get
on = {6a*}7{p%’}, )

where pY’ is the generalized interaction force between R, and R; and is given by

{p9'} = [R]{a} +{p¥"} (10)
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and
[R] = L [GHY[F] d, (n

() = f (GHT ()} .

Substituting eqn (6) into eqn (1) and taking variation, we obtain

o ) Laniia
G4™STs GA7SssGulla) |-G Sesq@+p9f’

where ¢\ = {u&j”, u;gj T, and continuity of displacements and traction forces at boundary
B is imposed. It is seen from eqn (12) that the first equation can be written as

{qx,} = [- Sl7 l‘SIBG‘xya'*" Slgq(x‘:)]. (13)

Substituting (10) and (13) into the second equation of eqn (12), we obtain
[GYT(Sps—STsSii ' S15)Gry— Rl {a} = — G (Sps— STpSii ' Sis)as) +p§. (14)

Once egn (14) is solved for {a}, exterior and interior fields can be calculated from eqn (4)
and eqn (13), respectively. In this paper results for the stress intensity factors obtained from
the nodal displacements near the crack tip are discussed. The results for the surface
displacements are presented elsewhere[29].

3. NUMERICAL RESULTS AND DISCUSSION

The displacements q,., at the nodal points within B are computed by the method outlined
above. The radius of the circle B was chosen to be 1.6 times the half crack-length. Total
number of equispaced nodes on B was 48, and the number of nodes within B was 308.
Isoparametric finite elements similar to those discussed in [28] were used, namely, six-node
triangular quarter-point singular elements near the crack-tips which were surrounded by a
layer of seven-node transitional elements. Mostly four-point quadrilateral elements and
some triangular elements were used in the rest of the domain B.

The stress intensity factors K; and K, are calculated from the crack opening dis-
placement (COD) near a crack-tip by the relations

K| _ p (1Y?]A
{Ku}—“(l—\') (z) {Az}’ (15)

Ay =4(vg—v4)—(v3—03),

Ay = 4(ug—u)—(us—u,).

when

In the above equation v, and u; represent the jump in the displacement components «, and
u,, respectively at the ith node. The nodes 2, 3, 4 and 6 along with L were defined in [28].
Here v is the Poisson’s ratio of the material.

In Figs 2(a) and (b) we show the comparison with the results presented in [5) for the
case of an incident Rayleigh wave when a = 90°. It is noted that labels on the vertical axes
of Fig. 6 in [5] are to be interchanged. Agreement is found to be quite good in this case
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Fig. 2. Comparison of the mode 1 and mode 2 stress intensity factors with those of [S}. « = 90°.
A=H-L B=H+L.

except when the upper crack-tip comes very close to the surface. This is to be expected since
as A approaches the free surface the circular boundary B comes very close to the surface,
and the near-field expansions given by (4) become very slowly convergent. Figures 3(a) and
(b) show the results for a horizontal (« = 0°) crack in comparison with those presented in
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Fig. 3. Comparison of the mode | and mode 2 stress intensity factors for a horizontal crack with
those of {7]. Here K, and X, are the ratios of the dynamic and static stress intensity factors.
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{7]. The loading in this case is that given by either
Q) = u, ek, (16)
or

Y = vy MO e, an

The agreement is again seen to be quite good.
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Fig. 4. Mode 1 stress intensity factors at the upper and lower crack tips for different crack orientation
angles.
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We now present the results for the normalized stress intensity factors for an inclined
crack with @ = 45° in comparison with those for the vertical (x = 90°) and horizontal
(a = 0°) cracks. Figures 4-6 are for P and SV waves with the angle of inclination 45° to the
negative y-axis. It is not surprising to note that for the SV wave 45°-inclined crack has the
largest stress intensity factors. For P wave, on the other hand, this seems to be true at low
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Fig. 5. Mode 2 stress intensity factors at the upper and lower crack tips for different crack orientation
angles.
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Fig. 6. Mode | and mode 2 stress intensity factors at the upper crack tip for Rayleigh wave incident
on an inclined crack from the left.

frequencies but not at other frequencies. Results for Rayleigh wave are presented in Figs.
6(a) and (b).

Figures 7(a) and (b) show the results for a vertical crack at different depths for incident
SV waves. Also shown on these figures are the results for a crack in an infinite medium.
Even at large H/L the results are found to be quite different from those in an infinite
medium.
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Fig. 7. Mode 2 stress intensity factors at the upper and lower crack tips of a vertical crack embedded
at different depths for an incident SV wave.

Since cracks are not always straight we considered a crack with two branches (a Y
crack). Some of these are presented when this is vertical [Fig. 1(b)]. Figures 8(a) and (b)
show the stress intensity factors at the top branch tips (B and C) in comparison to those
at the top tip of a straight crack. For P-wave incidence, the mode 7 stress intensity factor
at the branch tips is found to be slightly lower than that at the top tip of a straight crack
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Fig. 8. Comparison of the stress intensity factors at the upper crack tips of vertical Y and straight
cracks.

when the frequency is low. For SV wave the difference in the stress intensity factors in the
two cases is seen to be much greater at low frequencies. Finally, in Figs. 9(a) and (b), we
show the results for a Rayleigh wave. It is seen that the mode 7 stress intensity factor at the
left branch tip is generally larger than that at the right one. The mode 2 stress intensity
factor is found to behave in just the opposite manner.



856 A. H. SHAH e! al.

(o Stress intensity foctor vs KL
069
Half spoce Y-¢rock
R-wave
Vert:cat
H/L=1 830
PR
o K*
' R[“
+ 7
04
X 034
024
(] J
o T AN A L] ¥ 1
oe 16 24 32 40 48 56 64

(b} Stress intensity factor vs Kb
048 4
Hoalf space Y-crock
R-wave
Vertical
040 -
032 -
¥ o244
016 4
008
r g v d T v \
Q 1] 16 z4 32 40 a3 EX] [

K, L

Fig. 9. Mode | and mode 2 stress intensity factors at the upper and lower crack tips of a Y crack
for a Rayleigh wave incident from the left.

4. CONCLUSION

A combined finite element and analytical technique has been used to study the dynamic
stress intensity factors at the tips of straight and branched (Y) cracks. Comparison of the
results with other published ones are generally found to be good. It is found that the crack
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tip stress intensity factors change significantly with depth and orientation of straight cracks.
Also results for straight and branched cracks are quite different. It has been assumed here
that the crack is not too close to the free surface, so that it can be enclosed by a circle

ce
fo

ntered at the crack center. However, this can be relaxed by using the integral expressions
r the potential pairs (®2, ¥2) and (®;, ¥3) given in [27]. This work is in progress and will

be reported later.
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